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Bird identification with radar is important for bird migration research, environmental
impact assessments (e.g. wind farms), aircraft security and radar meteorology. In a study on
bird migration, radar signals from birds, insects and ground clutter were recorded. Signals
from birds show a typical pattern due to wing flapping. The data were labelled by experts into
the four classes BIRD, INSECT, CLUTTER and UFO (unidentifiable signals). We present a
classification algorithm aimed at automatic recognition of bird targets. Variables related to
signal intensity and wing flapping pattern were extracted (via continuous wavelet
transform). We used support vector classifiers to build predictive models. We estimated
classification performance via cross validation on four datasets. When data from the same
dataset were used for training and testing the classifier, the classification performance was
extremely to moderately high. When data from one dataset were used for training and the
three remaining datasets were used as test sets, the performance was lower but still extremely
to moderately high. This shows that the method generalizes well across different locations or
times. Our method provides a substantial gain of time when birds must be identified in large
collections of radar signals and it represents the first substantial step in developing a real time
bird identification radar system. We provide some guidelines and ideas for future research.

Keywords: radar ornithology; bird identification; pattern recognition;
continuous wavelet transform; feature extraction; support vector machine
1. INTRODUCTION

Bird movements have been studied by means of radar
for almost 60 years (Eastwood 1967). With radar, birds
can be detected over a wide range of distances (from a
few metres up to 100 km) during day as well as night
and under all weather conditions except heavy precipita-
tion. It allows a precise estimation of target distance
and depending on the type of radar and the operational
mode also of flight altitude. Thus, the information
available from radar is in the best case the position in
time and space, and the amount of energy reflected.

Radar has been used: (i) in studies of bird migration
(see the reviews by Bruderer (1997a,b), Gauthreaux &
Belser (2003) and Schmaljohann et al. (2007b)), (ii) in
studies of population dynamics of breeding seabirds
(Lilliendahl et al. 2003; Hamer et al. 2005) or roosting
land birds (Russell & Gauthreaux 1998; Bäckman &
Alerstam 2002), (iii) monitoring of bird traffic at
pplementary material is available at http://dx.doi.org/
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prospective locations of power lines, wind farms or
bridges (Harmata et al. 1999; Desholm & Kahlert 2005)
and (iv) in the context of bird strike avoidance
near airports and en route (L. Buurma 1996, personal
communication).

The potential increase in the construction of wind
farms in the coming years is a serious concern for avian
conservation (Garthe & Hüppop 2004) and radar
methodology has been of great importance for environ-
mental impact assessment (Desholm et al. 2006).

An important area of the application of radar
ornithology is to quantify the numbers of birds aloft.
At a first look the principle seems simple—the targets
detected in the radar beam are used to infer the spatial
or temporal distribution of birds. But insects, bats,
other flying objects and weather phenomena can
provide a significant proportion of the signals observed
(Eastwood 1967). The major problem in terms of abun-
dance is the distinction between birds and insects.
Insect movements are very common (e.g. Riley &
Reynolds 1986; Smith et al. 1993; Feng et al. 2007) and
can interfere considerably with the studies on bird
movements (Schmaljohann et al. in press). Airborne
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insect abundance depends mainly on the geographical
area, the season and time of day. Hence, the severity of
the problem is likely to be very variable depending on
the recording location and time. In the past, either
this problem was at least partly overlooked
(cf. Schmaljohann et al. 2007a) or various means were
used to try to separate bird signals from non-bird ones.

(i) The intensity of radar signals (echo size) has
been used jointly with the information of flight
speed in several studies to identify birds up to
the species level (e.g. Russell & Gauthreaux
1998; Lilliendahl et al. 2003). Using signal
intensity alone would be questionable since
large insects or insect swarms can produce
signals of a magnitude similar to that of small
birds. In the above-mentioned studies, the
information on signal intensity was improved
by prior knowledge of the abundance of the
species under investigation. Unfortunately, such
prior knowledge is rarely available. For the
majority of migratory birds (small passerines),
the intensity of radar signals will not suffice to
distinguish between birds and insects, because
there is a large overlap in signal intensity
between small birds and large insects (Larkin
1991).

(ii) Generally, birds fly at higher airspeeds (the
speed with respect to the air mass) than insects
(Bloch & Bruderer 1982; Larkin 1991; Feng et al.
2007). Ground speed (the speed with respect to
the ground) together with signal intensity is
used in several studies to distinguish between
birds and non-birds (Lilliendahl et al. 2003;
Hamer et al. 2005). Ground speed depends on
airspeed as well as wind speed and wind
direction, and therefore wind information must
be taken into account to calculate the airspeed of
a bird or insect. Even if very accurate wind
profiles were available, a clear separation of
birds and insects is difficult due to overlap in
airspeed between the two groups (Schmaljohann
et al. in press). The study of Larkin (1991) shows
that this overlap is far from negligible but
suggests that airspeed can be a valuable tool
for partially discriminating between birds and
insects. The severity of the overlap depends on
the insect species aloft and therefore information
on local insect fauna is needed. The problem is
expected to be more severe in regions or
during seasons with a high abundance of large
flying insects.

(iii) Recent studies performed with polarimetric
weather radar, which transmits and receives
horizontally and vertically polarized pulses,
indicate that it can be used to discriminate
between radar returns produced by birds and
insects (Zrnic & Ryzhkov 1998; Bachmann &
Zrnic 2007).

(iv) The temporal pattern of the signal intensity
(echo signature) depends mainly on the varia-
tion in the shape of the target (e.g. by flapping).
In various former studies, we tracked birds and
J. R. Soc. Interface (2008)
insects by radar and identified the target
through a telescope mounted parallel to the
radar beam. This provided radar signals of
visually identified targets, which enabled us to
learn how the target identity affects the recorded
signals. A typical pattern in signals produced by
birds is a periodic fluctuation of signal intensity,
which is caused by change in body shape due to
flapping. For bird targets the frequency of the
fluctuation either directly reflects wing flapping
frequency or several harmonics (integer multiple
of the frequency) are present in the signal. In the
latter case wing flapping frequency is easily
deduced since it is the fundamental frequency of
the harmonics. In our data, we found that insects
did occasionally produce periodic signals, but
these were close in shape to a pure sine wave
(unlike in birds) and their fundamental frequency
was generally higher than that in birds. Several
studies have pointed out that this pattern can be
used to distinguish between the signals of birds
and insects, mainly due to the distinctive wing
flapping pattern in the bird signals. (Bonham &
Blake 1956; Houghton 1964; Bruderer & Joss
1969; Bruderer & Steidinger 1972; figure 1). Bats
tracked by radar produced radar signals similar to
those of birds (Bruderer & Popa-Lisseanu 2005).

An accurate method to identify bird signals is ‘plot-
based labelling’. That is, to look at the plots of the
signals. Additionally, plots of the spectral density of the
signals (e.g. Fourier transforms or wavelet transforms)
can be used. Plot-based labelling has been successfully
applied in numerous studies (Bloch et al. 1981; Stark &
Liechti 1993; Liechti & Bruderer 1995; Bruderer &
Liechti 1998; Liechti & Schaller 1999; Nievergelt
et al. 1999; Hedenström & Liechti 2001; Bäckman &
Alerstam 2003; Schmaljohann et al. 2007b). However,
the method has some limitation—it is very time
consuming, it requires a highly experienced person
and, although there is a close match between different
experts, it is not free of subjective interpretation.

Here, we present a classification algorithm that
exploits the temporal pattern in the signals together
with absolute signal intensity. Its aim is to automati-
cally identify signals produced by birds. The algorithm
is based on a signal processing method (continuous
wavelet transform, CWT) and a statistical learning
method (support vector classifier, SVC). It is speci-
fically designed to be applicable to large datasets.
2. METHODS

2.1. Description of the radar system and data

For this study, we used four datasets consisting of
digitized radar signals. The datasets were collected
during four radar surveys in the Sahara desert
(Mauritania) at two locations in the years 2003 and
2004 (see table 1). The datasets are named A, B, C
and D. The radar was operated during all hours of day
and night. The height over ground of the detected
targets ranges from 20 to 7390 m. This radar system is a



Table 1. Details of the four datasets used in this study. (The absolute number of signals is given for each class and the percentage
(equal to class prior) is given in the brackets.)

dataset
recording
location season BIRD INSECT UFO CLUTTER total

A Ouadane spring 03 3098 (52%) 686 (12%) 442 (8%) 1652 (28%) 5878 (100%)
B Ouadane spring 04 4273 (12%) 26 244 (70%) 5465 (15%) 1099 (3%) 37 081 (100%)
C Ouadane autumn 03 4946 (14%) 25 964 (73%) 3825 (11%) 612 (2%) 35 347 (100%)
D Idini autumn 03 784 (4%) 10 667 (49%) 910 (4%) 9402 (43%) 21 763 (100%)
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Figure 1. (a,b) Two examples of (i) plots of signals produced
by birds flying across the stationary radar beam and (ii) of
their CWT (time–frequency representation). Larger values of
the CWT are indicated by darker shading. (a) Signal from a
continuously flapping bird (wader type) and (b) signal from a
bird flapping intermittently (passerine type).
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former military fire-control tracking radar with verti-
cally polarized pulses of 3.3 cm wavelength. The radar
was adapted specifically to detect birds (Bruderer et al.
1995). Fixed beam measurements (Bruderer 1971) were
performed at the oasis of Ouadane (20856 0 N, 11835 0 W)
and Idini (17857 0 N, 158280 W). In fixed beam measure-
ments, the radar is kept stationary pointing to a given
direction. All targets moving across the stationary
radar beam are recorded, providing information on
target distance and variation over time in target
reflectivity. To cover all relevant heights, the elevation
angle of the beam ranged from 68 to 848 (see electronic
supplementary material). The pulse repetition fre-
quency and the sampling frequency of the radar was
2083.33 Hz. In order to improve the signal to noise
ratio, the average was taken over adjacent but non-
overlapping blocks of 16 consecutive samples. There-
fore the final sampling frequency of the signals is
130.21 Hz; 130 Hz will be used for simplicity hereafter.
All the signals were digitized and stored automatically.
Obvious clutter signals produced by diffuse targets
(clouds, rain) were removed manually. Since the
sensitivity of a radar increases dramatically at close
range, a sensitivity time control (Skolnik 1980) was
applied to eliminate all targets that would not be
detected at a distance of 3 km. Thus, small insects and
weak ground clutter were suppressed. For more details
on data collection see Schmaljohann et al. (2007b).

Each signal is a sequence of numerical values. A
signal represents the fluctuation in signal intensity
(equal to reflectivity) over time. The time unit is
1/130 s. The primary unit of the radar signal P was
measured in milliwatts (mW). Since this quantity is
usually very small, we transformed it into a more
convenient unit, the dBm. The signal intensity S in
dBm is defined as SZ10 log (P/1), where 1 stands for
1 mW. See the plots of figures 1–3 for examples of radar
signals. The duration of the signals ranged from 1.5 to
38 s. This radar recorded the distance of the target with
a resolution of 30 m. During seven months of fieldwork,
over 5000 single targets were tracked simultaneously
with our radar and optically through a telescope. This
provided data of visually verified targets. Heiko
Schmaljohann (H.S.) did most of this work and used
this experience to learn to identify targets based on the
plots of the signals and the plots of the spectral density
of the signals (fast Fourier transform). This will be
referred to as plot-based labelling hereafter. H.S.
labelled all the signals used in this study via plot-
based labelling. He simultaneously used several
criteria. (i) Presence of a wing flapping pattern, which
J. R. Soc. Interface (2008)
is indicative of a bird (figure 1a,b). The detailed shape
of the pattern was also considered. A pattern close in
shape to a pure sine function is indicative of an insect.
(ii) Presence of repeated clusters of larger fluctuations,
which is indicative of passerine-like (figure 1b) or swift-
like flapping style. (iii) Value of the fundamental
frequency, which reflects the wing flapping frequency.
It must be between 2.5 and 30 Hz for birds. (iv) Overall
curvature of the signal. A curved signal indicates
a target flying through the beam (figures 1 and 2).
A straight signal indicates stationary clutter (figure 3).
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Figure 2. (a,b) Two examples of (i) plots of signals produced
by insects flying across the stationary radar beam and (ii) of
their CWT (time–frequency representation). Larger values of
the CWT are indicated by darker shading. (a) Signal with no
dominant frequency and (b) signal with dominant frequency
that changes over time.
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Figure 3. (a,b) Two examples of (i) plots of signals produced
by ground clutter and (ii) of their CWT (time–frequency
representation). Larger values of the CWT are indicated by
darker shading.
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The four datasets of the present study have been
sorted by the plot-based method by H.S. into four
classes. Class labels are written in uppercase through-
out this article.

BIRD, signals that can unambiguously be assigned
to flying birds; INSECT, signals that can unambi-
guously be assigned to flying insects; CLUTTER,
signals that can unambiguously be assigned to objects
on the ground (e.g. trees, hills, houses); UFO, signals
that are between the typical bird signals and insect
signals. They are clearly produced by flying targets but
cannot be unambiguously assigned to birds or insects.

It must be assumed that an unknown proportion of
the UFOs were actually produced by birds. It is
important to note that the uncertainty in plot-based
labelling has been explicitly coded by creating the class
UFO. Sand, dust or swarms of insects within the
same pulse volume as a bird produce radar returns
that partially mask wing flapping pattern. The bird
signals from dataset D are the most contaminated with
such returns due to frequent sand storms and high
abundance of insects. While recording dataset D the
J. R. Soc. Interface (2008)
airborne insects and sand particles were sometimes so
abundant that the signals looked similar to those
of clutter and such signals have been labelled as
CLUTTER. The signals from datasets C and B are
moderately contaminated, mainly due to the abun-
dance of insects. The signals from dataset A are weakly
contaminated thanks to the low abundance of insects.
The proportion of BIRDs is small in the datasets B, C
and D with values between 4 and 14% (table 1).
2.2. Merging classes to obtain a two-class
problem

To avoid the additional complication of multiclass
models, we recoded the classes. The class BIRD was
kept and it is contrasted to the new class OTHER that
comprises the INSECT, UFO and CLUTTER classes.
Including the UFOs implies that the class OTHER
contains an unknown amount of signals that were
produced by birds. In the models presented later, the
response variable is categorical with two levels (BIRD
and OTHER). Therefore the classifier that we con-
struct is aimed at separating signals, which are clearly
produced by birds from all other signals.
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Figure 4. (a) A signal from a bird (grey lines) together with
the local regression line (thick black line). (b) The residuals
obtained by subtracting the value of the local regression line
from the signal. Such residuals were used to extract the
variable sd-stat from the signals.
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2.3. Overview of the classification method

The classification method presented in this article is
divided into two consecutive steps. (i) A data pre-
processing step in which variables are extracted from
the signals (§2.4). (ii) A modelling step in which SVC
methods are used to train a predictive model that links
the variables to the class labels (§2.5).

The ultimate purpose is that the trained model
should be used to predict the class of new data (i.e. new
signals that have gone through the data pre-processing
step) with unknown class label. Therefore an important
issue is to quantify the classification performance that
can be expected from this classification method. This
was done by simulating the situation where we must
assign class labels to unlabelled data (§2.8): we first
train a SVC with a subset of the data, the training set.
Then the trained SVC is used to predict the class labels
of another subset of the data, the test set. Hence the test
set is treated in the same way as we would treat
unlabelled data, but for the test set we know the true
class labels. This enables the comparison of the
predicted class labels with the true class labels. From
this comparison we compute four measures of classi-
fication performance (§2.7).

We used the environment for statistical computing
R (R Development Core Team 2006) with the packages
kernlab (Karatzoglou et al. 2004) for the SVCs and
Rwave (Carmona & Whitcher 2004) for wavelet
transforms.
2.4. Pre-processing the signals
2.4.1. Distance correction. The intensity of the signals
is heavily influenced by the target’s distance from the
radar. Distance-corrected signals were computed accor-
ding to the radar equation (RK4 law, Skolnik 1980).
The distance-corrected signals correspond to what
would have been recorded if all the targets were at a
distance of 3000 m from the radar. Equations are given
in the electronic supplementary material. The distance-
corrected signals were used for all further steps.
2.4.2. Variables extraction. Signals are not a suitable
input format for our modelling method, the SVC.
Therefore variables must be extracted from the signals.
The variable extraction results in 67 variables named
maxi, sd-stat, resolution, coefmean-1, coefmean-2, .,
coefmean-32 and coefsd-1, coefsd-2, ., coefsd-32.
Details are presented below. Variable names are in
italic characters throughout this article.

—maxi. While a target flies across the fixed beam, the
signal intensity will first increase and then decrease.
As a consequence the signal’s overall shape is curved
(figures 1 and 2). The maximum intensity of the
distance-corrected signals was used as a variable,
which is called maxi. This variable depends on the
target size, shape, texture, orientation and on how
close it flew to the centre of the beam.

— sd-stat. We wanted to quantify the variation in the
signals that is due to wing flapping. To achieve this,
we stationarized the distance-corrected signals
J. R. Soc. Interface (2008)
(equal to removing the overall curvature) and then
computed the standard deviation of the intensity of
the stationarized signals. This gives the variable
sd-stat. Stationarizing was done by taking the
residuals from a local regression with a moving
window (LOWESS (Cleveland 1981)) with the window
size set to 150 samples. As an example, figure 4a
shows the distance-corrected signal from a bird and
the local regression line and figure 4b shows the
stationarized signal. The stationarized signals are
not used any further.

— resolution. The signal intensity can take only a
discrete number of values (a consequence of digiti-
zing). This is obvious in figure 3a where the signal
intensity takes only four different values. The
number of values represented in a given signal was
used as a variable that we call resolution. This
measures the overall variability in signal intensity.

— coefmean and coefsd. This group of 2!32 variables
was extracted via continuous wavelet transform
(CWT), which is a tool for analysing the spectral
content of signals. The input of the CWT is a radar
signal and the output is a time–frequency represen-
tation of the signal (see figures 1–3). A description of
this procedure is given next.

Several variants of CWT exist. We computed the
CWT with the Morlet wavelet. The wavelet methods
are described in Carmona et al. (1998), Torrence &
Compo (1998) and Addison (2002).
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grey vertical line represents the decision threshold equal to zero used to obtain the class-level predictions.
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The time resolution of the signals is 130 Hz and due
to the Nyquist limit they cannot represent frequencies
above 65 Hz. Frequencies below 0.31 Hz were not
considered because some of the signals were not long
enough to detect lower frequencies. Therefore we
considered 32 frequencies between 0.31 and 65 Hz.
The frequencies were selected on an exponential scale,
which is usual with the CWT. For a signal composed of
n samples the output of the CWT is a matrix with 32
rows and n columns. The numerical values in this
matrix are called wavelet coefficients and they rep-
resent the signal amplitude at a given frequency and
position in time.

Before computing the CWT, the signals were
prepared in two steps. (i) The distance-corrected signals
were demeaned and then normalized with sd-stat (i.e.
divided by sd-stat). The wavelet coefficients are pro-
portional to the amplitude of the signal. As explained
above, sd-stat quantifies the amplitude due to wing
flapping and therefore normalization with sd-stat
ensures that the wavelet coefficients related to wing
flapping (i.e. the upper frequencies of our range) have
comparable magnitudes across the signals. There is no
need to remove the overall curvature before computing
the CWT. The curvature produces non-zero coefficients
for low frequencies (typically below 0.31 Hz), but it does
not affect the coefficients for higher frequencies, which
are related to wing flapping. (ii) In order to reduce edge
effects, the signals were padded on both ends with 1000
samples equal to the first or last value represented in the
J. R. Soc. Interface (2008)
signal. The wavelet coefficients corresponding to these
padded values were removed afterwards.

Next, 2!32 variables were extracted from the
matrices obtained by CWT as follows. For every row
of these matrices, the mean and standard deviation of
the wavelet coefficients were computed. In other words,
for each of the 32 frequencies, we computed the mean
and standard deviation over time of the wavelet
coefficients. These variables are called coefmean 1–32
and coefsd 1–32. Smaller numbers are used to name
higher frequencies. An overview of the variable names
and associated frequencies is given in the electronic
supplementary material. These 64 variables contain
information on the periodic patterns in the signals.
2.4.3. Transformation and standardization of the
variables. The variables had skewed distributions and
several standard transformations were applied to
obtain more symmetric distributions (see electronic
supplementary material). All variables were centred
and scaled to meanZ0 and standard deviationZ1.
2.5. Support vector classifiers

As a statistical modelling method, we used the SVC
(Cortes & Vapnik 1995; Vapnik 2000; Hastie et al.
2001). The SVC accepts several predictor variables and
one binary categorical response variable. In our case,
the response has the two classes BIRD or OTHER.
During a training phase, a function that links the



0

0.5

1.0

1.5

(a)

(b)

(c)

de
ns

ity
0

0.5

1.0

1.5

de
ns

ity

1.0

1.5

de
ns

ity

Automatic identification of bird targets with radar S. Zaugg et al. 1047
response to the variables is estimated via a dataset with
known class labels. The resulting function is called a
trained SVC and can be used to predict the class of new
data instances with unknown class labels. A trained
SVC does not directly predict the class. Its basic
prediction is a numerical value, which we call the
‘score’. The score provides a ranking of the data
instances. Data instances with a larger score (more
positive) are more likely to be BIRDs and data
instances with a smaller score (more negative) are
more likely to be OTHERs (see figures 5 and 6). In
order to predict the class (class-level prediction), a
decision threshold must be chosen on the score. For
example, setting the threshold to zero means that data
instances that have a predicted score greater than zero
are assigned to the BIRD class and data instances that
have a predicted score smaller or equal to zero are
assigned to the OTHER class. In SVCs a decision
threshold equal to zero leads to the lowest overall error
rate (i.e. the proportion of data instances whose class is
wrongly predicted). A threshold equal to zero was used
for all the analyses presented in this article.

There exist several subtypes of SVCs, which are
specified by a kernel function (short: kernels). In
preliminary work we assessed the performance of SVCs
with four different kernels: ‘linear’, ‘polynomial’, ‘radial
basis function’ and ‘Laplace’. The Laplace kernel gave
the best performance and was used for this study.

The SVC with Laplace kernel has two tuning
parameters named C and sigma which control the
capacity of the classifier (i.e. its ‘flexibility’). They are
called tuning parameters because values yielding good
classification performance must be chosen by the
operator (see below).
0

0.5

–2 –1 0 1 2 3
score

Figure 6. Cross dataset method. (a)–(c) Datasets A, C and D:
plots of the estimated density over the score for the four classes
(BIRD, blue; UFO, green; INSECT, Red; CLUTTER, black).
Densities were estimated with kernel density estimation. The
2.6. Model selection

Amodel is defined as a subset of the 67 variables and by
specified values for the tuning parameters C and sigma.
A model selection was performed with dataset B to
choose a subset of variables and values of the tuning
parameters that yield the best classification per-
formance. Details are given in the electronic supple-
mentary material. Specifications of the selected model
are given in §3.
class-conditional densities are shown and hence the class priors
are not deducible from the plots. The class priors are given in
table 1. The grey vertical line represents the decision threshold
equal to zero used to obtain class-level predictions.
2.7. Four ways to measure classification
performance

An unbiased estimation of classification performance is
obtained by predicting the class of data instances that
were not used for training and compare these predic-
tions with the actual class labels. For this comparison
we used four performance measures: the area under the
ROC curve (AUC), the accuracy (ACC), positive
predictive value (PPV) and false negative rate (FNR).

The AUC (Fawcett 2006) quantifies how well two
classes are separated along the score axe. The AUC is
estimated with the predicted scores and the true class
labels of test data instances. AUC takes values
between 0 and 1. A classifier that classifies at random
has an AUC of 0.5, and a classifier that achieves perfect
separation has an AUC of 1. An AUC below 0.5
J. R. Soc. Interface (2008)
indicates that the classifier does worse than random
guessing. AUC offers two important advantages. (i) It
does not depend on the a priori frequency of the classes
in the dataset (called ‘class priors’ hereafter). Thus it is
the only performance measure that allows comparison
across different datasets, since class priors differ between
the datasets (table 1). (ii) It informs on the separating
ability of the score independently of a particular decision
threshold on the score. A technical description is given in
the electronic supplementary material.

When class-level prediction has been made, a test
dataset can be divided into four groups. (a) BIRDs that
were predicted to be BIRDs. (b) OTHERs that were
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predicted to be OTHERs. (c) BIRDs that were predicted
to be OTHERs. (d ) OTHERs that were predicted to be
BIRDs. Let a, b, c and d represent the number of data
instances found in the four groups, then

Accuracy : ACCZ ðaCbÞ=ðaCbCcCdÞ;
Positive predictive value : PPVZ a=ðaCdÞ;

False negative rate : FNRZ c=ðaCcÞ:
A more detailed description is found in (Fawcett 2006).

The accuracy (ACC) is the overall proportion of
correctly classified data instances. It is the ‘usual’
performance measure. However in the case of unba-
lanced class priors the accuracy must be interpreted
with caution. High values of the accuracy are often a
direct consequence of the fact that one class is over-
represented and do not reflect the separating ability of
the classifier. As an example consider dataset D, where
only 4% of the signals are BIRDs and 96% are OTHERs
(table 1). Imagine a very unspecific classifier that would
assign all the signals to the OTHERs. Such a classifier
would still achieve an accuracy of 96%, but it would be
useless to identify BIRDs in the data.

The PPV is the proportion of data instances
correctly predicted to be BIRDs among all the data
instances that have been predicted to be BIRDs. Since
our purpose is to isolate a subset which contains mostly
BIRDs we wish PPV to be as high as possible.

The FNR is the proportion of BIRDs that are wrongly
predicted to be OTHERs among the total number of
BIRDs in the test set. That is, it is the proportion of
BIRDs that are ‘lost’ when the classifier is used for
prediction, thus we wish FNR to be as small as possible.

The PPV and the FNR are useful when the interest is
on one of the two classes as is the case here. ACC, PPV
and FNR are specific for a given decision threshold,
unlike the AUC that is independent of the decision
threshold. It is important to realize that PPV and FNR
are interrelated via the decision threshold. This means
that PPV can be improved by moving the decision
threshold to more positive values, but this will
inevitably give a worse value for the FNR.
2.8. Assessing the classification performance of
the selected model on different datasets

2.8.1. The principle of cross validation. The aim of cross
validation is to estimate the expected classification
performance in the prospective situation where the
classifier will be used for prediction on new data. The
principle is to predict the score or class of a subset of
data which was not used for training (a test set). Then,
the predictions made by the classifier on the test set are
compared with the true class labels in order to estimate
the classification performance (i.e. AUC, ACC, PPV or
FNR). Cross validation leads to an unbiased estimation
of classification performance. We computed confidence
intervals around the performance estimators (tables 2
and 3) using the method described by Nadeau & Bengio
(2003). We have chosen to use the 95% confindence
bounds, i.e. intervals that include the true (but
unknown) classification performance in at least 95 out
of 100 cases. See the electronic supplementary material
for a more formal development.
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2.8.2. Cross validation to assess the ‘within dataset
method’.This procedure involves data from one dataset
at a time. It was performed separately for the four
datasets. It can be divided into three steps. (i) A
training set of sample size Ntrain was randomly sampled
without replacement from a dataset. The SVC was
trained with this training set. (ii) A test set of sample
size Ntest was randomly sampled without replacement
from the remaining signals of the dataset. The score and
class of the elements of the test set were predicted with
the trained classifier. (iii) The four performance
estimators were computed from these predictions and
the class labels. Steps (i)–(iii) were repeated 30 times
and the average over the repeats was used as the final
estimator (table 2). Ntrain was 4000 and Ntest was 5000
except for the dataset A, where Ntest was 1878.
(Additional results with NtrainZ1000, 2000 and 8000
are given in the electronic supplementary material.)
2.8.3. Cross validation to assess the ‘cross dataset
method’. This procedure involves data from two
datasets at a time. The training data were always
taken from dataset B and the test data were taken from
one of the three other datasets A, C or D. The ‘cross
dataset method’ was performed separately for the
datasets A, C or D. The procedure is slightly more
complicated than the ‘within dataset method’ due to
the fact that class priors are different in the four
datasets. It can be divided into three steps. (i) A
training set of size Ntrain was randomly sampled with
replacement from dataset B with the constraint that
the class priors are equal to those of the test dataset.
The SVC was trained with this training set. (ii) A test
set of sample size Ntest was randomly sampled without
replacement from dataset A or C or D. The score or
class of the elements of the test set was predicted with
the trained classifier. (iii) The four performance
estimators were computed from these predictions and
the class labels. Steps (i)–(iii) were repeated 30 times
and the average over the repeats was used as the final
estimator (table 3). Ntrain was 4000 and Ntest was 5000.
(Additional results with NtrainZ1000, 2000 and 8000
are given in the electronic supplementary material.)
2.9. Visualization of classification performance

In order to visualize the classification performance, we
plotted the distribution of the test data points over the
score separately for each class (see figures 5 and 6). The
distributions were estimated by kernel density esti-
mation with a Gaussian kernel. Kernel bandwidth was
selected according to the method of Scott (1992). Note
that the distributions are normalized to have a surface
of 1. Thus the plots do not account for the differences in
class priors.
3. RESULTS

3.1. Model selection

The selected model (i.e. the best performing model)
includes 43 out of the 67 variables: resolution, maxi,
sd-stat, coefmean 32–25 and 16–1 and coefsd 32–29 and



Table 2. Performance estimators and conservative 95% confidence limits when the within dataset method was used. (NtrainZ
4000, NtestZ5000 (except for dataset A, NtestZ1878).)

dataset AUC ACC PPV FNR

A 0.9953G0.0021 0.9711G0.0053 0.9733G0.0056 0.0283G0.0066
B 0.9850G0.0020 0.9691G0.0024 0.9287G0.0089 0.2010G0.0128
C 0.9748G0.0034 0.9594G0.0026 0.9174G0.0075 0.2184G0.0203
D 0.9656G0.0105 0.9796G0.0014 0.8691G0.0263 0.4851G0.0505

Table 3. Performance estimators and conservative 95% confidence limits when the cross dataset method was used. (NtrainZ4000,
NtestZ5000. Here the training data are always from dataset B.)

dataset AUC ACC PPV FNR

A 0.9898G0.0033 0.9497G0.0084 0.9601G0.0068 0.0563G0.0160
C 0.9496G0.0068 0.9310G0.0065 0.7932G0.0266 0.3207G0.0304
D 0.8873G0.0200 0.9627G0.0046 0.5060G0.0618 0.6618G0.0498

Table 4. The classification performance (AUC) of some of the models considered in the model selection procedure (including the
finally selected model). (The results presented in this table are based on the subset of 6000 signals from dataset B that was set
aside for model selection. The AUC is given for the best combination of tuning parameters (C and sigma). When several values of
the tuning parameters give the same maximum AUC, we show the smaller value of C and sigma.)

maxi sd-stat resolution coefmean coefsd C sigma AUC

full model y y y 1–32 1–32 10 0.1 0.9848
model A — — — 1–32 1–32 10 0.1 0.9783
model B y y y — 1–32 100 0.01 0.9741
model C y y y 1–32 — 100 0.01 0.9831
model D y y y — — 10 000 0.001 0.8724
model E — — — 1–32 — 100 0.1 0.9731
model F — — — — 1–32 10 000 0.0001 0.9386
selected model y y y 1–16 and 25–32 1–12 and 29–32 100 0.1 0.9891
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12–1. The selected tuning parameters for this model are
CZ100 and sigmaZ0.1. This model underlies all the
results presented hereafter. The performance of a
selected set of models is summarized in table 4.
3.2. Performance of the within dataset method

The smallest accuracy is obtained for dataset C
(ACCZ0.9594) and the highest for dataset D (ACCZ
0.9796). The classification performance measured with
AUC is highest on the dataset A followed by B, then C
and finally D (table 2). Interestingly, dataset A with the
highest proportion of birds resulted in the highest AUC
and D with the lowest proportion of birds resulted in
the lowest AUC. Overall AUC ranges between 0.9656
and 0.9953. The best performance for PPV and FNR
resulted in the dataset A. The subset of data which is
predicted by the classifier to be of the class BIRD
contains 97.3% (PPVZ0.9733) of signals, which truly
are of the class BIRD, whereas only 2.8% (FNRZ
0.0283) of the total amount of BIRDs in the dataset
have been wrongly predicted to be of the class OTHER.
The lowest performance for PPV and FNR resulted
in the dataset D. The subset of data which is predicted
by the classifier to be of the class BIRD contains 87%
(PPVZ0.8691) of signals, which truly are of the class
BIRD. But 49% (FNRZ0.4851) of the total amount of
J. R. Soc. Interface (2008)
BIRDs in the dataset have been wrongly predicted to be
of the class OTHER (table 2).
3.3. Performance of the cross dataset method

Names of datasets in this section always refer to the
data used for testing. The training set was always
dataset B. Qualitatively the results of the cross dataset
method are similar to those of the within dataset
method, but the performance is lower. The AUC is
highest on the dataset A, followed by C and finally D.
Note that this is the same ranking as for the within
dataset method (table 3).
3.4. Plots of class-specific distribution
of the score

In all the four datasets, the relative position of the
estimated distributions was qualitatively similar
(figures 5 and 6). In all the datasets and for both the
within and cross dataset methods, the class UFO
presents the largest overlap with the BIRDs.

The plots illustrate the results obtained with the
AUC, which can be interpreted as a measure of the
overlap between two classes along the score. The overlap
between BIRDs and OTHERs is lowest for dataset A
and highest for dataset D. This holds for the within
(figure 5) as well as the cross dataset methods (figure 6).
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Hence the overlap is related to the proportion of BIRDs
in the datasets (cf. table 1). In terms of overlap, the cross
dataset method is generally worse. For dataset D the
cross dataset method suffers from a large overlap
between BIRDs and the other three classes, which
results in a poor performance (cf. table 3).
4. DISCUSSION

4.1. General aspects

The results clearly demonstrate that an automatic
classifier for radar signals can be successfully estab-
lished. A useful property of the method is that the
output is a score, which provides a ranking of the data
instances according to the reliability of the predictions.
The decision threshold on the score can be set to other
values than 0. For example, setting it to higher values
improves the PPV but deteriorates the FNR (figures 5
and 6). This means that the selected subset will contain
a higher proportion of birds with the disadvantage
that more of the overall amount of the birds are lost to
the rejected subset. It is also possible to define two
decision thresholds on the score. An upper threshold
can be chosen to identify a subset of data with a high
proportion of birds (high PPV). A lower threshold can
identify a subset of the data which includes only very
few birds (low FNR). Finally, the data subset that is
defined in between the two thresholds can either be
treated separately in a specific analysis or be labelled
additionally by the plot-based method.

In all cases a certain proportion of the BIRDs are not
included in the selected subset. A desired property of
the classifier would be that the excluded BIRDs
represent a random subsample of all the BIRDs.
Presently, we cannot say whether this is the case. A
large part of the classifier’s recognition ability is based
on the pattern produced by wing flapping. Therefore it
is possible that birds that do not produce a clear wing
flapping pattern (e.g. soaring birds, dense bird flocks)
will get, on average, a lower predicted value for the
score than single birds, which are flapping most or all of
the time. If this is the case, our method would
selectively exclude soaring bird species and species
that fly in dense flocks. This important point will
hopefully be clarified in future studies.

Our approach uses a signal pre-processing procedure
and then a nonlinear modelling method (SVC), which is
necessary to achieve a high classification performance.
A disadvantage of such an approach is that it makes it
hardly possible to understand intuitively the process by
which the classifier assigns a score to the signals.

The classifier resulting from the training process is
dependent on the training dataset and thus on the
correctness of labelling by the expert. There was a
constraint in our expert learning, because we had to
extrapolate from signals identified visually during
daytime to nocturnal signals; though in a few field
projects we could also verify nocturnal signals with
infrared and light beam observations (Liechti et al.
1995). Since the flight mode of birds is basically the
same during day and night (except soaring birds), we
think that this extrapolation is unproblematic.
J. R. Soc. Interface (2008)
4.2. Performance

In the datasets B, C and D, the target class (BIRD) is
underrepresented (table 1). This is an unfavourable
situation because smaller class priors of the class BIRD
per se decrease the PPV. In this context the PPV
should be interpreted by considering the improvement
it brings when compared with the proportion of BIRDs
in the whole dataset (i.e. the class prior of the BIRDs).

Ourprincipal purpose is to identify and select a subset
of the data, which should contain a high proportion of
BIRDs while rejecting another subset, which should
contain as few BIRDs as possible. Let us take dataset B
for illustration. Drawing biological conclusions on birds
based on the complete datasetwould bemisleading since
only 12% of the signals are from BIRDs. When the
classifier is applied, the data are split into a selected
subset and a rejected subset. The proportion ofBIRDs in
the selected subset is over 92% (PPVZ0.9286), while
20%of the total number of BIRDs are lost to the rejected
subset (FNRZ0.2010). Drawing conclusions based on
the selected subset seems much more reasonable. The
results obtained for dataset C are very similar. For
dataset A the proportion of BIRDs in the selected subset
is over 97% and less than 3% of the total amount of
BIRDs is lost to the rejected subset. This performance is
above our expectation. It shows thatwhen class priors are
balanced, the practical usefulness of the classifier is
excellent. For the least performing dataset D, the
proportion of BIRDs in the selected subset is 87%, while
49% of the total amount of BIRDs is lost to the rejected
subset. If we consider that the initial proportion ofBIRDs
in the complete dataset was only 4%, this represents a
large improvement of the data quality, but the price paid
in terms of the amount of birds lost to the rejected subset
is large. Dataset D was recorded under frequent sand-
storms and an extremely high abundance of insects,
which reduces the classification performance (see below).
In our experience, such situations are rare, and the
performance obtained on datasets A, B and C is more
representative of the practical usefulness of our method.

Using a classifier trained with data from another
dataset (cross dataset method) provided qualitatively
similar results as above, but with a consistently lower
classification performance (table 3). It performed well
when the proportion of BIRDs was approximately 50%
(dataset A), but insufficiently when the proportion of
BIRDs was low (datasets C and D). In the cross dataset
method, it may be that the separability differs between
the test set and the training set. Hence, estimations of
PPV and FNR obtained from a cross validation on the
training set will not necessarily represent the PPV and
FNR obtained on the test set. More tests with other
datasets are needed to conclude whether the cross
dataset method is a reliable solution, at least when the
proportion of BIRDs is high (e.g. dataset A). The big
advantage of the cross dataset method is that there is
no need to create a further training set via the time-
consuming plot-based labelling.

It is known that an approximately correct specifi-
cation of the class priors of the test set does improve the
reliability of the predictions (Saerens et al. 2002). In our
cross dataset approach, we assumed knowledge of the



Automatic identification of bird targets with radar S. Zaugg et al. 1051
class priors in the test set. In practice this may not
always be available (for example for real time classi-
fication). But other sources of information may be used
to estimate priors. For example, temperature may be
used to estimate insect activity or preliminary knowl-
edge about the seasonal or local abundance of insects
may be available.

Regardless of the training method used, the classifier
achieved the best results (highest AUC) with dataset A,
followed by B and C and finally D. This ranking is
consistent with the decreasing proportion of BIRDs in
the datasets (table 1), which was caused by a tremen-
dous increase in the number of insects and amount of
airborne sand. Therefore, overlap of different signals
occurred frequently in the datasets B, C and D. The
presence of insects and/or sand in the same pulse volume
as a bird is expected to partially mask the wing flapping
pattern. But the recognition ability of the classifier is
mostly based on the wing flapping pattern in the signals.
Therefore it is no surprise that as the patterns become
less clear the classification performance decreases.
4.3. Possible improvements

Our datasets were dominated by nocturnal migrants,
consisting mostly of small to medium sized birds flying
singly. Signals of large birds (e.g. soaring birds) and
flocks of birds were relatively rare (less than 1% of the
BIRDs). Therefore, the present method was developed
mainly to identify signals from small- to medium-sized
single birds. In general, large birds and bird flocks
produce stronger signals than small single birds, but
unambiguous wing flapping patterns can hardly be
detected. In flocks the signal represents the super-
imposed wing flapping of all individuals in the radar
pulse volume, while large birds are often gliding or
soaring without flapping. In addition interferences
between the pulses (i.e. the electromagnetic wave)
reflected by several targets within the same pulse volume
will also render the signals more difficult to analyse.

Our classifier uses 43 variables. The signal intensity
(echo size) is only represented in one variable ‘maxi’.
The remaining variables contain information on the
variability or on the shape of the signals, which both
reflect the wing flapping. Therefore, our method heavily
relies on information related to the wing flapping and
probably does not fully exploit the potential of using
the signal intensity. An improved version of the
classifier should use the information on signal intensity
more efficiently than in the present study. This is
expected to result in a classifier with a good per-
formance on bird flocks and large birds.

In general, the frequency represented by the overall
curvature of the signal intensity is outside the range of
frequencies analysed by our algorithm. However, this
curvature together with target distance and width of
the radar beam could be used to extract a variable
representing the flight speed of the targets. Since birds
have a higher airspeed than insects, this could further
improve the classification performance.

A serious problem is the co-occurrence of intense
insect and bird migration. In such situations, many
signals of birds are contaminated by radar returns from
J. R. Soc. Interface (2008)
insects, making them very difficult to be labelled
unambiguously by the human expert. Accordingly,
such signals were labelled as UFO. Thus an unknown
proportion of the UFOs were actually produced by
flying birds. These signals may contain characteristic
patterns of birds that were not recognized by the
human expert, but that are recognized by the classifier.
Under this assumption we expect that the classifier has
more difficulties at separating the BIRDs from the
UFOs than the BIRDs from the INSECTs or CLUT-
TERs, which is the case in our data (see figures 5 and 6).
At the moment, we can only speculate that UFO signals
with high scores were actually produced by birds. But
to confirm this we need additional independent
information (e.g. parallel infrared images).
4.4. Applications
4.4.1. When is the exclusion on non-bird signals
important? We are convinced that for any radar study
dealing with the movements of small- to medium-sized
birds, a discrimination between bird and non-bird (in
particular insect) signals is a prerequisite. Of course the
exclusion of non-bird signals becomes less important
when the overall proportion of birds is close to 100%.
But in most situations such high proportions are not
seen. In our study, which we consider representative
for arid sub-tropical climates in general, birds represent
4–52% of the signals. The study by Larkin (1991)
showed that in temperate regions insect contamination
can be 24–28% (up to nearly 100% on specific nights),
and even in the Arctic insect signals were recorded
regularly by radar (Gudmundsson et al. 2002).
4.4.2. Application across different radar systems. The
method is feasible for all kind of radar systems, which
allow a target to be recorded continuously for at least a
few seconds. We might wish to train a classifier with
data from a given radar system and use this classifier to
identify birds in a dataset recorded with another radar
system. But the following aspects must be considered.
(i) The process by which wing flapping produces the
periodic fluctuations in the signal is not fully under-
stood. It is known that wavelength and polarization of
the pulses do affect this process considerably (Bruderer
1997b; Bachmann & Zrnic 2007). (ii) The overall power
of the received signals depends on technical settings,
which can differ significantly between radar systems,
and even the relative fluctuations of the signal are
dependent on the dynamic range of the amplifier.
(iii) The time resolution of the signals can differ
depending on the signal processing units of different
radar systems. Based on these three points, we think the
training data should be recorded with the same radar
system as the data on which the classifier is applied.
4.4.3. Real time classification.Radar measurements are
used for bird strikewarnings, mainly inmilitary aviation.
Up to now these warnings are based on the expert
knowledgeof the radar operators. In order to introduce an
automatic classifier, radar signal identification should be
in real time or close to it (withinminutes). Such real time
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warnings could also be used to mitigate detrimental
effects of wind turbines by stopping them for the time of
mass migration. For real time classification we have to
rely on a classifier that was trained on data recorded in
the past. Thus, there is a strong demand to improve the
performance of the cross dataset method.

The differences in flapping styles between bird species
are reflected in the shape of the recorded signals, and
hence in the values of the extracted variables. It is
reasonable to assume that, in general, the species
composition of the birds aloft differs between recording
locations and periods. We conclude that differences in
species composition between the datasets are the probable
cause of the lower performance of the cross dataset
method as compared with the within dataset method.
Based on this we suggest to improve the cross dataset
method by creating a ‘standard’ training dataset where all
different kinds of birds (small to large sized, continuous
and intermittently flapping) are more or less equally
represented. Such a standard training dataset could be
built up over time by combining datasets from different
sites, until repeated comparisons with the within dataset
method would indicate a satisfactory performance.

The cross dataset method could be implemented in
real time to provide a relative quantification of
migration intensity (i.e. allowing relative comparisons
between time periods). It could be used, for example, to
detect a fast increase in the abundance of birds aloft and
help us react by giving an alarm.
4.5. Perspectives

A promising approach for the future would be to
combine several existing radar methods that provide
information on target identity. (i) The method presented
here, which uses wing flapping pattern. (ii) Signal
intensity (echo size). As mentioned above signal
intensity is underexploited in our method. (iii) Airspeed.
(iv) Signal dissimilarity due to varying polarization
(dual polarization radar, Bachmann&Zrnic 2007). As at
least some of the information gathered by these methods
is complementary, combining the methods might
improve classification performance. Whether it is
technically feasible to record simultaneously all this
information with one radar system is questionable.

The time resolution of our recording system is
restricted to 130 Hz, implying an upper bound at
65 Hz on the frequencies that can be analysed. Using
a higher time resolution would allow the detection of
higher frequencies and this might provide additional
information on the wing flapping of some insects and
improve the classification performance.

The pattern produced by the wing flapping of birds
contains information related to the wing flapping
frequency and the mode of flapping (continuous,
intermittent). This information can be used to divide
the birds’ signals into several subclasses according to
their wing flapping style, for example wader-like,
passerine-like or swift-like (Bloch et al. 1981). This is
of great interest for the studies on bird migration. It
would be interesting to see whether the division into
subclasses can be automated as well.
J. R. Soc. Interface (2008)
4.6. Conclusion

It has been known for many years that bird signals can
be recognized accurately by human experts thanks to
the excellent pattern recognition ability of humans. The
main finding of our study is that this recognition task
can be automated by using machine learning methods
such as the SVC. This considerably reduces the depen-
dency on human experts and will allow analysis of
large datasets of automatically recorded radar signals
in almost real time. We are convinced that this kind
of classification will be an indispensable tool for future
radar applications dealing with biological targets.

We would like to thank Erich Bächler, Bruno Bruderer,
Alexandros Karatzoglou, Beat Naef-Daenzer, Dieter Peter,
Thomas Steuri and Barbara Trösch for their assistance and
support. We would like to thank Mark Desholm and two
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The algorithm was implemented in the free and open source
statistical programming language R (R Development Core
Team 2006). Researchers interested in the algorithm
(R-code) are encouraged to contact us.
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